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Asymptotically Dense Spherical Codes—Part |I:
Wrapped Spherical Codes

Jon HamkinsMember, IEEE and Kenneth ZegetSenior Member, IEEE

Abstract—A new class of spherical codes calledrapped spher- whereas laminated spherical codes have been constructed for
ical codesis constructed by “wrapping” any sphere packing dimensions less thas0. The wrapped codes have a somewhat
Ain Euclidean space onto a finite subset of the unit sphere iy er construction than the laminated spherical codes.

in one higher dimension. The mapping preserves much of the . . . — ;
structure of A, and unlike previously proposed maps, the density In the remainder of Section |, basic definitions are given.

of Wrapped spherica| codes approaches the density of as the Section |l discusses the best known upper and lower bounds
minimum distance approaches zero. We show that this implies on spherical code density. In Section Ill, we give the formal

that the asymptotically maximum spherical coding density is construction of wrapped spherical codes and compute their
aCh'e.gled bthrappe‘lj(.Sphe”ca' codes whenevex is the densest 5qympiotic density. Proofs of two of the technical lemmas can
possible sphere packing. be found in Appendices | and Il. Numerical performance of
Index Terms—Asymptotic density, laminated lattices, packing, wrapped codes is presented in Part Il [1], in order to compare
source and channel coding, spherical codes. the wrapped spherical codes with laminated spherical codes.

I. INTRODUCTION B. Preliminary Definitions

A k-dimensionalspherical codeis a set of points inR*
A. Overview that lie on the surface of A-dimensional unit radius sphere.

T HIS paper is the first of two parts that present newome of the many applications of spherical codes include

spherical code constructions that are asymptotically der@n@ling on a Gaussian channel with equal energy signal

as the minimum distance tends to zero. Part | introduc8®tS [2], [3]; spherical vector quantization, used in low bit-

wrapped spherical codes, which are constructed by mapplidf SPeech coding and other source-coding problems [4],

finite subsets of sphere packings to the unit sphere in o €fficient searches ok-dimensional space [6]; numerical

higher dimension. The precise mapping is carefully chosen §¥2/uation of integrals on spheres [7]; and the computation

induce good asymptotic density properties. In fact, using off the minimum energy configuration of point charges on a

construction with the densest possible sphere packings give&ere [8] for chemistry and physics applications. In this paper,

rise to the densest possible spherical codes, asymptotically/® concentrate on the generic spherical code design problem
The sequel (Part II, see [1]) to this paper introduces Iarﬂ’-"'th re§pect to minimum distance), rather than a particular

inated spherical codes, which are constructed by projectiigPlication of spherical codes. S _

onto the unit sphere a union of known concentric spherical D€note the surface of the unit radidsdimensional Eu-

codes of one less dimension. The construction is analogougtgean sphere By

the construction of laminated lattices. In fact, asymptotically as k

the minimum distance tends to zero, the density of laminated O = {(a:l, oy ay) € IRF Z zl = 1}, (1)

spherical codes approaches the density of a laminated lattice i=1

packing in one lower dimension. t

. . : e
For large dimensions, the wrapped spherical codes gener%ly: (k7r’“/2)/1“((k/2) + 1), and thek-dimensional content

outperform the laminated spherical codes, whereas the la Y .
nated codes perform better for low dimensions such as th vglume) of by Vi = n/%/I'((k/2) + 1), wherel' is the

and four. Both families of spherical codes are asymptoticaIVysuaI gamma function defined by
superior to existing spherical codes. Also, wrapped spherical e

. . : : I'(z) = et dt.
codes can be constructed in any dimensional Euclidean space, o

(k — 1)-dimensional content (surface area) 9. by
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- spherical cap is not relevant, the notation may be abbreviated
asc(k, ¢). If spherical caps of angular radiig2 are centered

1 at the codepoints of a spherical code with minimum distahce
and minimum angular separatiénthen the caps are disjoint.
d The (k — 1)-dimensional content of(k, 6/2) is given by
0
S(c(k, 6/2))

- 9/2 }
@) = Sk—1 / (x —23/6 4+ O(2”))* 2 da
0
6/2 9
=Sr_1 / <a:k_2 K £ O(a:k+2)> dx
0
_ 1 o1 k=2 k1
= Suma (2 012 - i )
206+ ©)
= Vi1 (8/2)"71 = O(6**) 7
Fig. 1. (a) The relationship between minimum distant@nd minimum d k—1
separating anglé. (b) A spherical cap. =Vi_1 <§> + O(dk—l—l) (8)

. . . Sk - where (8) follows by using (4).
where|| - || is the Euclidean distance ilR". The minimum " A sphere packingor simply packing is a set of mutually

distance of a spherical code is directly related to the “qualit isjoint, equal-radius, open spheres. Faeking radiuss the

of the code in many channel coding applications. For chann? Siius of the spheres in a packing. As defined in [21], a packing

with high signal-to-noise ratios, one generally desires to MK said to havealensityA if the ratio of the volume of the part

?mize the minimum distance for a given number of codepomgsf a hypercube covered by the spheres of the packing to the
m: cc;?e. icall I volume of the whole hypercube tends to the limif as the
S this paper concentrates on asymptotically snaaliit side of the hypercube tends to infinity. That is, the density is

is important to clarity some notation. For a functigr@d_), the fraction of space occupied by the spheres of the packing.
let O(g(d)) denote any functiory(d) for which there exists |, density Az of a spherical code? C € with minimum

positive constants anddy such thab < f(d) < cg(d) for all yigtancey is the ratio of the totalk — 1)-dimensional content

d € (0, dy). Requiring f(d) = 0 is not the standard usage Ofg¢ | gisjoint spherical caps centered at the codepoints and

O(-), although it has also been used in the computational cofz, angular radiugd/2, to the (k — 1)-dimensional content
plexity literature [29]. This usage simplifies t'he p.resen.ta'tiprb? Qu; that is, Ac = [C] - S(c(k, 6/2))/Sy. This definition is

of several bounds in the paper. Note that with this def'n't'oﬁnalogous to the definition of the density of a sphere packing
F(d) = O(g(d)) and f(d) = —O(g(d)) cannot both be true (see Fig. 2). LethM (k, d) be the maximum cardinality of a
unlessf(d) = 0 for all d in some interva0, do). Also, for  ;_gimensional spherical code with minimum distanteand

example,f(d) > g(d) + O(d) is equivalent tof(d) > g(d) |et A (k, d) be the maximum density among &Hdimensional
for sufficiently smalld. The dimension: will be regarded as spherical codes with minimum distande Then

a constant in the asymptotic analysis.

The angular separation between two points (vectors) _ Mk, d)S(c(k, 8/2))
XY €  is cos7!(X - Y). The minimum angular Ak, d) = Si,
separationof spherical cod& (see Fig. 1(a)) is defined as

: 9)

The value of M (k, d) is easy to compute for ali when

6= 2sin"'(d/2) (38) k& = 2. However,M(k, d) is unknown for allk > 3 except
3 3 for a handful of values of, although a number of bounds have
=d+ oq T O(d). (4)  been given [9], [11], [12], [17], [22]-[31]. For asymptotically

small d, the tightest known upper bounds avf(k, d) are
The set of points of;, whose angular separation from a fixedjiven in [25] for ¥ = 3 and in [22] fork > 4, and a code
point X € Q, is less thanp, is called aspherical cap centered construction in [28] provides the tightest known lower bound.

at X with angular radius¢ and is denoted by However, there exists a nonvanishing gap between these upper
and lower bounds ad — 0.
ex(k, ) ={Y € Q. : X - Y > cos ¢}. (5) A family of codes {C(k, d)} is asymptotically optimal

if |C(k,d)|/M(k,d) — 1 asd — 0, or equivalently, if
This is illustrated in Fig. 1(b). When the centéf of a A, q)/A(k, d) — 1 asd — 0. Given a densest packing
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whose asymptotic density is worse than the wrapped code is
less thanl.

[I. BOUNDS ON THE DENSITY OF A SPHERICAL CODE

When designing for minimum distance, the bekt
dimensional spherical code with minimum distantés one
which has the largest number of codepoints, namidyk, d).
Consequently, most previous authors have uségk, d) as
the figure of merit for a spherical code. Using (9), any bound
on the code sizé{(k, d) may be converted to a bound on the
code densityA (k, d). Whereas the code size increases without
bound asd becomes small, the density is always a number
in the interval[0, 1]. Therefore, for small minimum distances
the bounds are more easily compared if they are expressed in
terms of density. Additionally, using density as the figure of
merit instead of code size allows one to compare the quality
of codes with different minimum distances. Conversion of the
bounds from statements aboM (k, d) to statements about
A (k, d) also highlights the gap between the existing upper
and lower bounds, and brings to light the fact that some of
the best bounds known are not asymptotically tight.

A. Asymptotic Spherical Code Density

Intuitively, as d — 0, the density of the densest-
dimensional spherical code approaches that of the densest
sphere packing irk — 1 dimensiong. Let the asymptotically
maximum spherical coding densite defined by

A = lim Ak, d)

where A (k, d) is the maximum density of &-dimensional
spherical code with minimum distaneg as defined in (9).
Let AP** denote the density of the denséstimensional
sphere packing.

Observation 1Agode = AP,

A formal proof of this observation may be found in [4].
Some justification for this observation can be seen by the
fact that); may be approximated by convex polytopes, as
shown in Fig. 4 wherk = 3. On each face of the polytope, a
(k — 1)-dimensional sphere packing may be placed.

The wrapped spherical codes presented in this paper give
efficient constructions based on the intuition of Observation
Fig. 2. Sphere packing density and spherical code density. (a) The sph1' In addition to being asymptotically o_pnmal, thgy _also
pac-kiﬁg density is the percentage of the square that is shad.ed, as the le erform other codes fPr moqerate sizes dbf This is
of the side of the square goes to infinity. (b) The spherical code density is leémonstrated numerically in [1, figs. 6-8].
percentage of the unit sphere that is shaded. Note that sinceﬂga‘:k = 7r/(2\/§), the maximum asymp-
totic density possible for a three-dimensional spherical code is

in R, we show how to construct asymptotically optimalr/(2v/3). The densest sphere packing is not knownifor 2,
spherical codes. Fig. 3 shows the asymptotic densities of {iwever? From Observation 1, upper bounds on asymptotic

best spherical codes, i.e., the densities of the spherical cogB8€re packing densities give Upper bounds on spherical code
asd — 0, for dimensions up tc50. For each dimension, densities. For example, Rogers’s bound [21] on sphere packing

the limiting density of spherical codes constructed by tHiEnsities is used to provide the upper bound in Fig. 3.

various methods is computed. To emphasize the comparisofiori = 3, a densest covering of Earth with dimes looks like the hexagonal
to wrapped spherical codes, this limiting density is dividedttice packing4, to someone standing on the Earth.

by the asymptotic density achieved by the wrapped sphericaﬁ'” 1991, Hsiang announced a proof [32] (later published in [33]) of
d H in Fia. 3. th lized d itv of th Kepler's conjecture, dating back to 1611, that the face-centered cubic packing
codes. Rence, In Fg. 3, tn€ normalized density of the WrappPfghe densest packing in three dimensions. However, the validity of the proof

code is identicallyl, while the normalized density of any codehas been questioned [34]. Hsiang has published a rejoinder [35].

(b)
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Fig. 3. The ratio of the asymptotic density of various spherical codes to that of wrapped spherical codes constructed from the densest knovas @ackings,
function of dimension. Except for the upper bound, all curves are béloindicating the superiority of the wrapped spherical code.

Fig. 5. The density of a spherical code with minimal angle separatitn
at most the percentage of area covered in the spherical triangle formed by
three mutually touching caps of angular rad&)e.

imal angular separation was shown to be bounded as
M@, d)r )
COt2 <—7 -1
< cos—l 6M(3, d) — 12

5 (10

Fig. 4. The unit sphere may be approximated by polytopes.

from which the following lemma is obtained.

. . Lemma 1:The densityA. of any three-dimensional spher-
1) Fejes Bth Upper Bound = 3): For_ small d, the ical codeC with minitmyur?n dista)r/med >0 satisfiesAcpg

smallest known upper bound oW/ (3, d) is given by Fejes 7/ (2V/3).

Toth [25], who proved that disjoint spherical caps with angular — proof: Combining (3) and (10) gives

radius 6/2 cannot be packed on the sphepg in a denser

configuration than that of three mutually tangent spherical d< \/3_ cot? <;)

caps with angular radiug/2 (see Fig. 5). As a result, the min- B 6 —12/M(3,d)

B. Upper Bounds on Density
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or, equivalently, evaluating the bound is high fdr > 3, as it involves|k /2]
/6 -1 nested integrals.
M3, d<2. |- ———-— Coxeter’'s bound was motivated by an argument of Rogers,
(3 d) < { oot ! m} y an arg g

who showed that the fraction of a simplex’s volume covered by
spheres centered on the simplex vertices is an upper bound on
the density of a sphere packing, despite the fact that simplices
cannot tileR* for & > 3 [21]. Coxeter’s bound uses a similar

Using

S(e(3, 8/2)) =5, /00/2 sin z dz = 27(1 — cos 6/2)

argument, except thaik” is replaced by2;, and simplices are

— — /1 = A2

=2 (1 1-d /4) replaced by spherical simplices. (A similar argument was used

and (9), for a proposed bound on the quantization coefficieniRif
A3, d) [37].) Thus when Coxeter’s bound av (%, d) is translated to

1 a bound omA (k, d), it becomes a statement about the density
2. [1 - t—lﬂ—/(j} - 2m(1—\/1—d?/4)  of aspherical simplex of edge-lengthAs d — 0, the density
CO

< V3 —d? of the spherical simplex of edge-lengthon ;. approaches
- 4r the density of a regular simplex iR*~!, which gives us the
1—./1-d2/4 following lemma.
/6 / . (11) Lemma 2: Coxeter’s upper bound on asymptotic spherical
- coding densityAsede equals Rogers’s upper bound on sphere
cot-L V3— &2 g VAV pack q g pp p

. acking densityAP?er.
Some elementary (but laborious) calculus reveals that (11)p|s g Y21

. ’ code ja ti i
monotonically decreasing faf € (0, 1), and thus approaches Co.rollary 2 , Coxeter's upper b‘;i’;l‘*. Qﬁk Is tight .If and
its supremum asi — 0. The limit of (11) asd — 0 is only if Rogers’s upper bound oA}™7" is tight. In particular,

Coxeter’s bound is not asymptotically tight fér= 4.
m/(2V3). - Proof: The first statement follows from Observation 1
SinceAL*™* = 7/(2v/3), Lemma 1 agrees with Observatiorand Lemma 2. The second statement follows because Rogers’s
1, and implies the following. bound of AE** < 0.7796 has been improved t&AL** <
Corollary 1: The Fejes ©th upper bound on spherical code).7784 [38]. O
size is asymptotically tight.
Proof: From Observation 1, it follows that

AP = AP — 7 /(2/3). C. Apple-Peeling Spherical Codes and
The Fejes Bth bound implies Other Lower Bounds on Density
ALY = lim A (3, d) = 7/(2V/3). O Any known k-dimensional spherical code with minimum
d—=0 distanced gives a lower bound o (k, d), and hence on

2) Coxeter Upper Bound«(> 4): Boréczky [36] proved A (k, d). Much work has been done to find the best spherical
that in a k-dimensional space of constant curvature, theodes, such as from binary codes [12], [13], [31]; shells of
density of a packing of equal radit-dimensional spheres lattices [15], [29], [39]; permutations of a set of initial vectors
cannot exceed the density bf 1 such spheres that mutually[40], [41]; simulated annealing or repulsion-energy methods
touch one another. This verified Coxeter’s conjecture [22] thi, [28], [42]; concatenations of lower dimensional codes
spherical caps ofY;, can be packed no denser thiaspherical [30]; projections of lower dimensional objects [24], [26], [28];
caps orf;, that simultaneously touch one another. The cente?gd other means [2], [3], [27], [43]-{46].
of these caps lie on the vertices of a regular spherical simplexUnfortunately, none of the spherical coding methods above

This is a generalization of the Feje®th bound fork = 3. performs well in a fixed dimensioh, asd — 0. Also, many
Coxeter’s bound is given by of the methods above produce spherical codes for only a

finite number of minimum distances Previously, the best

M(k, d) < M spherical codes known for asymptotically smailvere the so-
(o) called apple-peeling codes due to El Garaghl. [28]. Their
where « is determined by technigue resembles peeling an apple in three dimensions, and
is described below for comparison purposes. We also compute
sec 2a = _2 +k-2 the asymptotic density of the apple-peeling codes.

2-d? Let C*(k — 1, d) denote anyk — 1)-dimensional spherical
and whereF}, : R — IR is Schlafli's function [10] given by code with minimum distance, whose codepoints are indexed
the recursive relation from 1 to |C*(k — 1, d)|. The apple-peeling spherical code

9 fa CA(k, d) on €y, with respect taC*(k — 1, -) is defined in [28]
(o) = = / Iy (B)do as the set of points
T Jsec—1 ((k—=1)/2)

with sec 23 = (sec 28)—2, and the initial conditiongy(«) =
Fi () = 1. Unfortunately, the computational complexity of {(z1(¢, j) cos n(¢), - -, xr—1(%, 5) cos n(3), sin (n(¢)))}
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such that codes it constructs are referred to as wrapped spherical codes.
, This technique creates codes of any size and thus provides a
1 Z:— < < 12 ) . . )
ielle /2 <n(l) < 7/2} (12) lower bound on achievable minimum distance as a function

JefL, o, [C7(k =1, df cos 1)) [} of code size. We will show that the spherical code density
nt)=3GE+1/2)0 approaches the density of the underlying packing{ as 0.
X(i, ) = (x1(4, §), -+, wp—1(i, §)) is thejth  (13) Any spherical codg can be described by the projgction _of
codeword ofc*(k — 1, d/ cos 5(i)). |t§ codepomts. to the interior of a sphere of one less dimension
via the mapping
It is verified in [28] that the apple-peeling code has minimum
distanced. =,
Summing over all values afin (12) and choosing* (k — O\ Z T e G
1, d/ cos n(i)) to be a maximum size code for allgive the =t
lower bound Conversely, a:-dimensional spherical code may be obtained
L(x/26)—-(1/2)] by placing codepoints withifl;_; and projecting each code-
Mk, d)>2- Z M(k -1, d/cos n(i)). (14) point onto§2; using the reverse mapping. This mapping was
i=0 used by Yaglom [24] to map & — 1)-dimensional latticeA
The Beta functions(-, -) = I'(z)I'(y)/T'(z +¥) is used in the onto{l,. However, the distortion created by mappifido €2
following lemma. gives poor asymptotic spherical code densities, evénsfthe
Lemma 3: The density of the densektdimensional app|e_ densest lattice ik — 1 dimenSionS, as summarized in Flg 3.
peeling spherical codé#(k, d) approaches This is due to the “warping” effect on the codepoints near the

boundary, as illustrated in Fig. 6.
1. Apackﬁ(k 1)
2 k—2

202 Intuitively, any continuous mapping will have this distortion
asd — 0. problem—e.g., it is difficult to wrap a piece of paper around a
Proof: See Appendix I. ball without wrinkles forming somewhere on the ball. Wrapped

Corollary 3: For all k& > 3, the k-dimensional apple- SPherical codes avoid the distortion problem by partitioning
peeling code is not asymptotically optimal. Furthermore, tHéx into annuli, as shown in Fig. 7(a). Within each annulus,
ratio of the asymptotic density of apple-peeling codes # continuous, small-distortion mapping is used, as shown in
k-dimensions to the maximum asymptotic spherical codirfg9- 7(b); this mapping is similar but not identical to the

density A (k) tends to0 ask — oc. mapping Yaglom used. Using the intuition of Observation 1,
Proof: This follows from the facts thak - g(%, 1) is namely, thatkSTall patches . can be approximated by small

less thanl for all £ > 3 and that this quantity approaches Patches ofR*™", each annulus is mapped to a finite region in

ask tends toso. g IR*"!. A dense sphere packing is placed in that finite region

) and the inverse mapping is applied. The resulting points lie on

The numerical values of(k — 1, d) for k > 4 are not he griginal annuli and are the codepoints of the spherical code.
presently known, except for a handful of vaIuesdoﬂwencE, There is some flexibility in choosing the mappirfgfrom
Aca,q) cannot be easily evaluated using (14). AlSg™;  each annulus t&R*~!, but there are several desirable charac-
is not known fork > 5, and so the asymptotic performance igeristics one would likef to have. First, within each annulus,
also difficult to evaluate. However, the numerical values of thge mapping should be continuous. This will guarantee that
asymptotic density of the best realizable apple-peeling codggints of an annulus which are close together remain close
given the current state of knowledge &f(k — 1, d), can be tggether afterf is applied to them. One also would likgto
determined as follows. If, in (13);*(k — 1, d/ cos (1)) IS pe an easily computable one-to-one function whose inverse is
chosen to be the best code known with the given parameteqg,, easily computable. Third, the mapping should have the
then a lower bound o (k, d) can be computed. By Obser-property that if X andY belong to the same annulus 6%,
vation 1, the density of(k — 1, d/ cos 7(4)) can be as high {nen I£(X) = F(Y)|| < ||X = Y||. If this is the case, then a
as the density of the best sphere packing knowR/n 2. The sphere packing with packing radid$n IR*~! can be projected
asymptotic densities of the best appli—peeling codes currenftheth annulus of2, via £~1, to result in a spherical code
realizable are given by replacing;™, in the formula for \yith minimum distanceat leastd. Finally, f should have the
the density in Lemma 3 with the density of the best Sphefﬁoperty that the(k — 1)-dimensional content of an annulus
packingknownin R*~2. This apple-peeling code asymptoticshould be very similar to thék — 1)-dimensional content of
density is shown in Fig. 3, using a table [10] of the best spheyig. image of that annulus undgr This is necessary for the

packings known, along with recent improvements from [4Zsymptotic density of the spherical code to equal the density
and [48]. The asymptotic density of the wrapped sphericg} ihe sphere packing used IR*~!.

codes is equal or higher in every dimension. We now discuss the wrapped spherical code construction in
more detail. In particular, we give a precise description of our

Let A denote a sphere packing IR*~! which has minimum
In this section, a mapping is introduced which effectiveldistanced and densityA . A may be either a lattice packing
“wraps” any packing ifR*~* around;; hence, the spherical or a nonlattice packing. We define thaitude of a point X =



1780 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 6, NOVEMBER 1997

(b)

Fig. 7. (a) Annuli of Q3. (b) Relationship betwee&? lattice below and
points of the induced wrapped spherical code above, in an annulus.

i.e., the closest point t& that lies on the border betweeh)
and A;. This is shown in Fig. 8. Let prime notation denote the
Fig. 6. Yaglom's mapping consists of taking the part of a lattice withinapping fromIR* to IR*~! obtained by the deletion of the

§2;_1, shown at the top, and projecting it out of the page onto the surfafgst coordinate, so that, for exampl®, = (T1, -y Tp—1)-
of €2, shown at the bottom. The function f; is defined by

.1 . X’
(1, -+-, ) € Qp assin™ (ay), i.e., the angle subtended fi(X) (XL =1 XL = XD+ (15)

from the “equator” taX. Let —n/2 = qg < -+ < an =7/2 X

be a sequence of latitudes of annulus boundaries. <iihe where(z); = max (0, z). Define theith buffer regionof £,

annulus.is defined gs_tlhe set of poin(&l, ar xp) € as the set
that satisfy; < sin™" zp < ;41 (i.€., points between
consecutive latitudes), and it is denoted By. The real B, ={Xed: |X-X|<d}
numbersag, ---, any Will be chosen later to yield a large
code size. The wrapped spherical codéy with respect to a packing
For eachi, we define a one-to-one mappirfg from A; to having minimum distancé is defined as
k_l f— DTS . p—
a subset olR"™". For eachX = (21, ---, 23) € A;, let Coy = U f; 1 (A\{O})\ B.

Xp=arg min{||X — Z||: Z=(x, - -, zx—1, sin o) € . . -
L=ate H%n{n I (=2 Pty st o) € e} An example of a wrapped spherical code is shown in Fig. 9.



HAMKINS AND ZEGER: ASYMPTOTICALLY DENSE SPHERICAL CODES—PART | 1781

sin™! «;), has the property that(X) = (z1, -+, zp_1).
Annulus inner boundaries are projected vertically down-
ward and are then contracted.

As this paper is chiefly concerned with asymptotic perfor-
mance, discussion on small codebook improvements possible
for moderately large minimum distances will be limited.
A number of simple improvements are possible. One such
improvement involves the buffer regiaB, which is included
in the code definition solely to ensure the minimum distance
requirement is met. For a particular value @f a careful
choice of latitudeg «; } may make much of the buffer region
unnecessary.

As desired, f; has the property thaltf;(X) — f;(Y)| £
|IX —Y||. Given that]| f;(XX)|| < || X|| and that the orientation
of X is the same as that ¢f(X), this property is somewhat
intuitive. A rigorous proof is somewhat cumbersome, however,
and is, therefore, relegated to Appendix Il. We state the result
in the following lemma.

Lemma 4: If

fiX) FXL)’ X =(x1, ", zx) € A
and

Fig. 8. Geometrical interpretation of the mappifig
Y:(y17 T yk) GQk

are in the annulusi;, then
1£:(X) = (W < 1 X = Y%

Proof: See Appendix II.

Corollary 4: If A is a sphere packing with minimum dis-
tanced, then the minimum distance of the wrapped spherical
codeCy is also at leastl.

Proof: If distinct X,Y € Cy belong to theith annulus,
then | X = Y| > ||fi(X) = fi(Y)|| = d, since the minimum
distance ofA is d. If X andY belong to different annuli, then
the definition of B guarantees their separation is at ledst]

IV. ASYMPTOTIC DENSITY OF
THE WRAPPED SPHERICAL CODE

Let ¢, = w;41 — o; denote theangular separatiorof the
ith annulus, let) = max (¢;), and let¢ = min (¢;). In order
to have an asymptotically optimal spherical code, one expects
that asd — 0, the angular separation of the annuli must go to
zero in order to make the curvature of the annulus negligible,

Fig. 9. The wrapped spherical codg}? (3, 0.05). and that, consequently, the number of annuli must increase.
As d — 0, we must also be able to fit in more and more

Remarks: points in each annulus in order to make the density within each

e f; is a continuous and one-to-one function 4f. annulus approximately equal to the maximum packing density.

¢ Both f; and fi_1 are easily computed, as they are merelyhe following theorem proves that these two conditions are
scalings of their input and the addition or deletion of theufficient for the wrapped spherical code to be asymptotically
last coordinate. optimal.

* The image of the annulud; in € under f; is a region Theorem 1:Let A be a(k — 1)-dimensional sphere packing
in R*~! bounded by two concentrig: — 1)-dimensional with minimum distanced. Let Cy» be a wrapped spherical
spheres inR*!. code with respect ta and with latitudesyg, - - -, a. If the

¢ Annulus outer boundaries are projected vertically dowmaximum and minimum annulus angular separations satisfy
ward. That is, a pointX = (z1, ---, z3) lying on the limy_.o[¢ + (d/¢)] = 0, then the asymptotic density &%y
boundary betweem;_; and A, (i.e., such thatz; = approaches the density df i.e.,limg_.o Acy,, = Ay,
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Proof. There are two components needed to compute thaus

density of a spherical code @ty the total(k—1)-dimensional Cw N A:|S(e(k, 6/2))
content of the caps in the code, and tte— 1)-dimensional Ay, = g
content of{2;. The density equals the former quantity divided Ai .
Ax(Sk, — O(d d\
by the latter. To prove the theorem, we show that(the- 1)- { A(SR; ( ))} Vi1 <_> (14 0(d?))
dimensional content of spheres packed in the images of the _ L Vea(d/2)kt 2
annuli converge to thé: — 1)-dimensional content of the caps Sa,
in the wrapped spherical code, and that the images themselves _ Ap(Sk, —O(d) (1 + O(d?))
have content which converges to that{f. = Sy
We concentrate on an arbitrary annulus, ttieannulusA,, _ N 2
and its image,R; = fi(A4;). Let S4, and Sg, denote the > Aa(Sa; = O(¢; +d))(1+0(d ) (18)
(k—1)-dimensional contents ol; and R;, respectively. Note )
that A; and R; depend ond. Throughout this proof, constants A, <1 O<</> + d)) (14 0(d?))
encompassed b@(-) notation do not depend oh
First, we show thatS,, is very close toSg,. Since A; is Al (1 (14 0(d?))
the region bounded between latitudesand «;+;, we have —eAET +
Qi1 _ 2
Sa, =Sk—1 / cos* 2 zdx =44 <1 < )) (1+0(d%)
jli+1 -
=Si_1 / [cos*=2 a; — O(z — ;)] dz (16) =0a - O<¢ - g) (19)
=Sh_1¢h; cost 7% q; — O(¢?) where (18) follows from the left-hand inequality of (17). If,

instead, the right-hand inequality of (17) is used, we obtain
where (16) follows from the Taylor expansion ofs*~2 z
about «;. The (k — 1)-dimensional content ofR; is the Ag; < Ap (20)
difference between thék — 1)-dimensional contents of two gjnce (19) and (20) do not depend @n
concentric(k — 1)-dimensional spheres, namely, a sphere of

radius cos ¢; and a sphere of radiusos «; — 2 sin (¢;/2). Ay — O<$+ _) < Ac. <Ay 1)

Thus ? —= wo=

Sk, = Vi1 cos®* ™ a; — Vi_1(cos a; — 2 sin (¢;/2))* ! Sincelimg .o [¢ + (d/$)] = 0, the theorem follows. O
= Vi—1[cos"™t o Equation (19) also suggests a choice {ef;} that will

— (cos* ™Y a; — (k= 1) cos* 2 a; + O(¢2))] prov::je a fast rate of convergence, and implies the following
. corollary.
= Si—16i cos"* @i + O(¢7) Corollary 5: Let A be a(k—1)-dimensional sphere packing
with minimum distancel, and letCy be a wrapped spherical
code with respect té and with latitudes given by; = iv/d
Sa. — O(¢?) < Sg, < Sa,. (17) for0<i< 7/(2V/d). Then the spherical code density satisfies
|ACW - AA| < O(\/a)
Next, |A N R;| is computed; this is the number of spheres Of Proof: The result follows immediately from (21), since

and it follows that

the sphere packing that lie within R;. We have =¢= V. 0
(SR O(d)) V. CONCLUSIONS
m .
A==

A new technique was presented that constructs wrapped

where theO(d) term appears because the density of Ia’[ti%Dherical codes in any dimension and with any minimum

oints in&: mav be lower tham « in a region within distance 9'Stance. The construction is performed by defining a map
b i Mey 4 d : from R*"! to . Although any set of points inR*~!

d of the boundary ofR;, and the(k — 1)-dimensional content b dk.(ﬂ 19 y hni P it the d

of this boundary region i®(d). Note that|A N R;| is a little may be wrapped td} using our technique, 1t the densest

. . k—1 - .
more than|Cy N A;| becaus&yy, deletes any point which lies packing n IR IS usgd the wrapped spher_lcal codes are
within the buffer region;. We have asymptotically optimal, in the sense that the ratio of the density

of the constructed code to the upper bound approaches one
ICw N Al =|AN RA\{O} — |AN R; N f;(B;)\{0}] as the number of codepoints i_ncreases. This d_emonstrates the
An(Sr, — O(d)) ALO(d) tightness of the upper bound in [25], asymptotically, and that
= - 1 =) previous spherical codes are not asymptotically optimal.
Vi-1(d/2) Vi-1(d/2) Related techniques for creating spherical codes may prove
:M_ useful. Another class of spherical codes called “laminated
Vi—1(d/2)k=1 spherical codes” [1] have been created by building up shells of
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codepoints ifR*~* in such a way that when projected directlyHence
onto §2;, they result in a spherical code of minimum distance
d. Asymptotically optimal performance has been achievedcs (x, d)

in three dimensions, and good asymptotic performance is

also achieved in higher dimensions, where thdimensional

CS(k,d) N R| - S(c(k,0/2))
S(R)

laminated spherical code density approaches the density of M(k =1, d/ cosn)S(c(k,0/2))

the laminated latticeA;_;. The question of whether the
asymptotic density of thé-dimensional laminated spherical

code is optimal is equivalent to the question of whethgr
is the densest sphere packing.

For nonasymptotic codes, an important question in channel
decoding and quantization is how to find the nearest codepoint_
to an arbitrary point inIR*. The decoding complexity of
the wrapped spherical codes turns out to be equivalent to
the decoding complexity of the underlying lattice; a detailed
decoding algorithm and complexity analysis can be found in

[4].

APPENDIX |
PROOF OF LEMMA 3

Let v € (0, n/2) and

R={(x1, ..., xp) € U :sin vy <z < sin(y+6)}

and letS(R) be the(k — 1)-dimensional content aR. Then

y+8
k—2

cos zdx

S(R) = S+ /

~

v+6
=Sk / (cos v = Oz — )" da
8l

v+6
=Sk_1 / cost =2 4 — O(z — ) dx
v
=Sj_10 cos" ™2 v — O(6?).

Since thekth coordinate of every codepoint @ (k, d) is of
the formsin [(4 +1/2)#], every codepoint i€ (k, d) N R has
the samekth coordinate, sayin n. Thus

|C%(k, d) N R| = M(k -1, d/ cos 7). (22)
By the definition of Afede, given anye > 0 there exists a
sufficiently smalldy, > 0 such that

M(k—1, d/cos n)S(c(k — 1, sin™* (d/(2 cos 1))))
Sk_1

< AP 4 e

b O(6°)

:2(30577

for all d < dy. Since

d
2 cos

one can apply (7) and obtain

S(c(k =1, sin™! (d/(2 cos 0))))

9 k—2 .
- vk_2<2 — n) —0(6%). (23)

sin~!

S(R)
< (AR + €)Sk-15(c(k, 6/2))
= S(e(k =1, sin™! (d/(2 cos 1))))S(R)
(A5t + 0 (Vis (0/24 " - 0(8F+))

(24)

k—2
Vi2 <2 Czs n) - 0(9’“)> (0 cosh=2y — O(6%))

0 k—1
(Aio_df + G)Vk_l <§>

<

2
blaost =2 Ve (o) (1= 0@) (1= 0(6%)

(AR + Vi

2 cos

= Wiy + O(8), (25)
APV
_ Tk=2 k72 6
Vs +O0(e+6),

where (24) follows from (23), and where (25) follows from

cos 7y cos

= =14 0O(0).
cosnn  cosy— O(f) +00)
By letting e — 0 andf — 0, the result is obtained. O
APPENDIX Il
PROOF OF LEMMA 4
Let X = (21, ..., a%), Y = (y1, ..., ), and as before,

let prime notation denote the deletion of ttil coordinate. Let

(X)) = IS Ol = IXe) [l = 11X = X

Then
1£:(30) = £V
k— 2
N (X)) e
‘;<||Xf|| D y)
=« 2 @ 2 _ a(X)a(Y) (A vl
=a(X)* 4+ oY) ||X'(||')||zﬂ|)|2X Y
9 a(X)a(Y
BN Y
X =Y = (X - YD) o (26)
9 vy QX)alY
< o= + (X = VI +
X =Y = (X = YD) (27)
a(X)a(Y)

)

(28)

(=g X =Y+ <7 -
DR

SIXT=YP = X = 1Y)
<X =Y
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where (27) follows because [12]
(U(X) = a(Y))? < (e —yn)* + (| X = YD) 3]
To see this, note that(Y") depends only ony, and not any [14]
of 41, -+, yp_1. Hence, for the computation af(Y)?, no
generality is lost by assumingyy, ---, yx—1) iS @ constant
times (xy, ---, xx—1). This impliesX = Yz and [15]
[16]
X =Y'|I? = (1X"] = Y]
[17]
Thus
(a(X) = a(Y))? (18]
2
= [IXL)l = I1XL = XD = (&) = IXe =Y D" 9]
= (I|XL = Y| - [| Xz — X]])?
<X -v|P (29) [
= (= y)? +IX = Y| 2]
= (o —w)® + (1X = 1Y])? [22]

where (29) follows by the triangle inequality. Also, (28)23]
follows since

[24]
a(X) = I(X2)'|| - 1Xz — X
< X[ = 1(Xe) = X' = 1 X7]] [25]
(and similarly a(Y') < ||Y’]]) and 26]
2
X =Y = (X = 1Y) [27]
by the Cauchy—Schwarz inequality. [28]
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